AIME考生都来了吗?咳咳,你的“救急”锦囊来了!
距离AIME开考仅有一周时间了,是否有感到时间不太够,心态不太稳?本文从
- AIME考试信息
- AME与AMC知识点的差异
- 答题注意事项(Tips)
- AIME题目难度
- AIME答题策略
- AIME历年分数线
- AIME历年考点总结和超强预测
- AIME知识图谱
总共八大角度,为大家细致剖析了AIME考试需要注意的点点滴滴。已为你汇总完毕,记得收藏好!
01
AIME考试信息
【考试时长】:3小时
【考试日期】:2022年2月9日下午13:00-16:00(AIME1)
【试卷语言】:中英双语
【试卷构成】:15道填空题,每道题的答案都是在000-999之间的整数
【满分】:15分
【计分方式】︰一题一分,答错不扣分
02
AIME与AMC10/12的差异
差异一: 不同的考试形式
从75分钟25题的选择题,变成3小时15题的填空题,巨大的考试形式的差异,这意味着我们不再可以用选择题的答题技巧(如排除法、试数法、度量法等等),而是要硬碰硬地去解决每一道题目。在相对比较充足的时间内,理解题意,联系对应的知识点和技巧,通过一步一步地推理和计算,得到正确的结果。这非常考验数学的基本功,也考验心态和计算的稳定性。
差异二: 更多的知识点
AIME的大部分考点都是与AMC12一致的,此外在几何、数论、组合模块各多了少量的知识点,这些知识点大多比较复杂,一般出现在AIME的后5题中,掌握这些知识点是冲击高分的关键。但是不要忘记前10题中,多数还是AMC10和12的核心知识点,因此巩固强化AMC部分的内容也是很重要的。(注:对于AMC10首次晋级AIME的考生来讲,备考AIME首先需要了解AMC12相比AMC10所多出的内容)
AIME相比AMC12新增的核心知识点
☞ 代数:无
☞ 几何:三角形的多心问题 根轴与根心 塞瓦定理(Mass point方法) 位似变换
☞ 数论:高次同余方程 指数型同余计算问题(费马小定理与欧拉定理、LTE引理、阶与原根相关定理) 线性不定方程
☞ 组合:无穷时间状态的期望问题 标数递推 生成函数计数
AMC12相比AMC10新增的核心知识点
☞ 代数:对数 三角函数 复数与单位根 多项式的根 圆锥曲线 三维坐标系 多重数列求和
☞ 几何:圆幂 圆内接四(多)边形 内心与圆外切四边形 正余弦定理 Stewart定理
☞ 数论:中国剩余定理
☞ 组合:递推计数 插板法
差异三: 更加灵活和综合的题目
AIME题目的最大特点就是灵活性和综合性。因此需要考生有很强的思维发散性,不要禁锢于某些刻板的公式和套路,而是真正去理解、思考、联想,找到隐藏在众多表面线索背后的本质。
➤ 灵活性:AIME里很多题目的考察不注重固定的知识点(性质或公式),而是背后的一些数学思想。例如代数部分,无论是对数题、三角题、复数题,都可能会考察一些代数变形的思想和技巧,如整体代换、因式分解、递推方法、对称式和轮换式、自相似、赋予代数式几何含义等等。这些技巧都非常灵活,不是死记硬背就可以套用的公式,需要考生拿到题目时,进行思考、分析、尝试,确定最合适的方法,然后再进行求解。
➤ 综合性:AIME的很多题目都可能会涉及多个模块的知识点,即涉及交叉领域的题目。例如一道三角函数的题目,可能会牵扯复数和多项式的技巧以及几何的性质;一道几何的题目,可能会用复数和坐标系的方法;一道代数的题目如果有很多整数的条件,可能会和数论有很大的关系;一道概率计算的题目,可能最终是一个递推数列求解或者多重数列求和的问题。
➤ 多样性:AIME的题目往往会有很多的切入点,也会有多种解法。例如一道组合题目,可能可以用分类讨论加枚举解决,可能可以用递推进行计算,也可能用一一对应的方法一步解决。一道几何题,可能可以用勾股和相似解决,可能可以用三角暴力计算解决,也可能用建坐标系的方法解决。因此越“多才多艺”的同学,在做AIME题的时候,越是能够找到最合适的方法,提高自己的正确率。
03
答题注意事项
❶ 在考试前先确定自己的答题策略:
➤ 自己的目标是做到第几题,做出多少道题目?
➤ 一道题目目标是花多少时间?最多花多少时间?
➤ 最后留多少时间来检查?
➤ 自己有没有特别擅长的模块?要不要优先做自己擅长的题目?
➤ 有没有特别薄弱的模块?要不要先跳过自己薄弱的题目?
❷ AIME部分需要记住的公式:
➤ 代数:三角恒等变换公式(注意积化和差-和差化积),复数单位根相关公式,三角的复数表示公式,对数运算公式,递推数列求解通项方法,均值不等式,高次方程韦达定理,圆锥曲线的方程,坐标系中距离公式(点-直线,直线-直线,点-平面),直线夹角公式,鞋带定理;
➤ 几何:常见面积和体积公式,勾股定理,正余弦定理,圆幂计算公式,三角形center的相关性质,托勒密定理,Stewart定理,塞瓦定理(或者mass point的性质);
➤ 数论:因式分解公式,因数相关公式(个数、和、乘积),不同进制转化公式,同余计算法则与同余方程解法,中国剩余定理,费马小定理与欧拉定理;
➤ 组合:插板法公式,二项式定理,Hockey-Stick恒等式,容斥原理公式;
❸ 解题前,先想一想:
➤ 几何题可以想想能不能建系做?如果建系的话,计算量是否合适?最后决定用什么方法;
➤ 三角函数化简问题,可以考虑能不能用复数表示后再化简;坐标系中涉及点旋转的问题,可以考虑用复数表示;
➤ 递推数列问题,先算几项找找规律,看看是不是周期数列;再思考能不能用累加累乘或者特征方程求解通项;如果不可以求通项,可以考虑相邻两个式子相减,消常数后因式分解或者构造新数列;如果递推关系明显与整数有关,需要从数论的角度来考虑;
➤ 代数题或者几何题中,如果强调变量都是整数,那么很有可能最后是数论题(例如列出一个整数方程);
➤同余类问题,要分清楚是线性/多项式类同余问题,还是指数型同余问题,前者可能涉及中国剩余定理和线性同余方程组的求解,后者可能涉及费马小定理和欧拉定理、阶与原根的性质、LTE引理。
➤ 组合题要分清楚是普通计数问题(普通方法),有限时间状态(标数递推法)还是无穷时间状态(状态转移图和列方程),它们的解题方法完全不同;
➤ 组合计数题中,“至少存在(at least)”类问题和“都不满足”类问题,可以考虑算反面(complementary counting)和容斥原理(PIE);间隔与相邻类问题,分配与选择问题,可以考虑插板法;经过分类讨论, 能把情况n变为n-1或n-2或者更小的情况,可以考虑递推方法;
❹ 做题过程中的注意事项
➤ AIME中有些题目文字较多,基本上数学题中不会有没用的信息,因此一定要仔细读题看图,如果线下考试的话在上卷上标记出重要信息,如果线上考试则在草稿纸上写下题目的重点信息;
➤ 线上考试的同学,几何题无论有没有给图,都在草稿纸上画一遍图(建议多准备几支不同颜色的笔);
➤ 草稿也不要写得太乱,要让自己检查的时候很快能找到每一步的计算结果;
➤ 双语试卷读题时,先看自己熟悉的语言,如果觉得题目有歧义,再看另一种语言来确认;如果有配图的,可以先看图再看文字;
04
AIME题目难度
从表格可以看出,15题中,1-5题,6-10题,11-15题这三个区间的题目正确率的差异还是较大的,因此我们可以这样来分类:
➤ 1-5题(简单题):正确率在50%以上。这部分基本对应AMC10/12的11-20题的难度。
➤ 6-10题(中等题):正确率在15%-50%中间。这部分基本对应AMC10/12的21-24题的难度。
➤ 11-15题(难题):正确率在15%以下.这部分题基本对应的都是AMC12的压轴题的难度。
注:这个分类并不是完全精确,可以发现有些年份中,1-5题中也会有中等难度题,6-10题中也会有难题,11-15中也会有相对简单的题目。因此大家做题时,如果某道靠前的题目完全没有思路,说明可能就是一道难题,则可以及时跳过;后5题也不要看都不看一眼,说不定也有不那么难的题目~~
05
答题策略
1-5题正常按照顺序做,当感觉到题目变得复杂时(大约是从第6题附近开始),可以考虑以下策略:
➤ 均衡型:如果自己不同模块的水平比较均衡,可以按照题目顺序进行答题,每道题目控制好时间,一道题目上卡了太久就及时跳过。
➤ 模块回避型:如果自己在某一模块上明显薄弱(例如组合),那么就先全部跳过此类题目,完成其他题目后若还有时间再回过头来做这类题目。
➤ 模块优先型:若自己不同模块的水平差别十分明显,那么建议可以根据自己不同模块的水平,从高到低依次解答剩余题目。例如几何最强则先做几何,组合最弱则最后做组合。
06
历年AIME分数统计
注:以上均为美国本土的考生数据。2021年应该把缺考的考生都记为了0分,因此0分考生的占比非常高,且同一分数在2021的百分比排名也比其他年份靠前许多。
07
AIME考点总结与预测
08
AIME知识结构图
08
总结:还有一周,如何高效复习?
- 阅读完整篇文章,思考清楚自己的目标、答题策略、时间分配方案;
- 最近3年的真题卷,如果还没有刷过的同学,一定要再做一遍(有时间的可以做最近5年的);
- 整理一遍之前的错题,重新做一下;
- 对照前面的知识结构图,在笔记本上逐条写出相关的性质、定理、解题方法等,如果发现自己不太熟悉的部分,赶紧复习一下或者寻求老师的帮助;
- 考前一天,切记不要刷太多的题目,把知识点过一遍后,调整好状态,早点睡觉休息!
最后,祝各位AIME的考生,能够在本次考试中,发挥出自己的全部水平,取得理想的成绩,在冲击数学赛事的更高荣誉的路上,踏出坚实的第一步。