MATHEMATICS
Objectives Grades: 6-9
Grade 6
Objectives
Students will be able to:
1. Define sets of integers, rational numbers.
2. Use operations to simplify expressions with integers and rational numbers.
3. Recognize a linear expressions.
4. Simplify and solve Algebraic expressions.
5. Solve word problems.
6. Define a linear equation.
7. Use addition, subtraction, multiplication and division properties of equalities to simplify and solve linear equations.
8. Define inequalities.
9. Define Ratio, proportion and percent.
10. Solve word problem using ratio, proportion and percent.
11. Define and solve problems about direct variations.
12. Define lines and angles.
13. Measure an angle.
14. Draw triangles.
15. Find the area and volume of a circle and plane figures.
16. Identify population and sample.
17. Find probabilities of simple events.
六 年 级
数学学习目标
1. 定义整数、有理数集。
2. 使用运算来简化带有整数和有理数的表达式。
3. 识别线性方程。
4. 简化和求解代数方程。
5. 做应用题。
6. 定义一个线性方程。
7.利用等式的加减乘除性质简化和求解线性方程组。
8. 定义不平式。
9. 定义比率、比例和百分比。
10. 使用比率、比例和百分比解决应用题。
11. 定义和解决正变分。
12. 定义线条和角度。
13. 测量一个角度。
14. 画三角形。
15. 求圆形和平面图形的面积和体积。
16. 确定总体和样本。
17. 找出简单事件的概率。
Grade 7
Algebra
Objectives
Student will be able to:
1. Recognize a rational number.
2. Define square root and cubic root of a number.
3. Apply rules of powers of integer to simplify expressions.
4. Write a number as a scientific notation.
5. Define a linear equation in two variables.
6. Define a coordinate plane.
7. Plot points in a plane.
8. Define and find the slope of a line.
9. Write the equation of a line.
10. Graph of a line in a plane.
11. Define parallel and perpendicular lines.
12. Define a linear inequality in two variables.
13. Define a system of linear equations in two variables.
14. Solve a system of two equations in two unknown graphically and algebraically.
七年级代 数
代数学习目标:
1. 认识一个有理数。
2. 定义一个数的平方根和立方根。
3. 应用整数幂的规则来简化表达式。
4. 写一个数字作为科学记数法。
5. 定义两个变量的线性方程。
6. 定义一个坐标平面。
7. 在平面上绘制点。
8. 定义并找到一条线的斜率。
9. 写出直线方程。
10. 平面中的线图。
11. 定义平行线和垂直线。
12. 定义两个变量的线性不等式。
13. 定义一个包含两个变量的线性方程组。
14. 以图形和代数的方式求解两个未知数的两个方程组。
Geometry
Objectives
Students will be able to:
1. Be familiar with the idea of undefined terms as point, line and plane.
2. Understand the basic postulates of geometry.
3. Define segments, rays, and identify congruent segments.
4. Understand the concept of plane separations.
5. Measure an angle and identify congruent angles.
6. Define and classify triangles.
7. Recognize congruent triangles.
8. Apply postulates and theorem to prove congruent triangles.
9. Write a proof theorems and postulates.
10. Define parallel and perpendicular lines.
11. Define Median, Altitude Angle bisector and perpendicular bisector.
12. Apply theorems about congruent triangles.
13. Define Pythagorean theorem.
14. Solve word problem by using Pythagorean theorem.
15. Find area and volume of solid figures.
七 年 级
几何学习目标:
1. 熟悉点、线、面等未定义术语的概念。
2. 了解几何的基本假设。
3. 定义线段、射线并识别全等线段。
4. 了解平面分离的概念。
5. 测量角度并确定全等角度。
6. 定义和分类三角形。
7. 识别全等三角形。
8. 应用公式和定理来证明全等三角形。
9. 写出证明定理和假设。
10. 定义平行线和垂直线。
11. 定义中线、高线和垂线。
12. 应用关于全等三角形的定理。
13. 定义勾股定理。
14. 用勾股定理解决应用题。
15. 求立体图形的面积和体积。
Grade 8
Algebra
Objectives
Students will be able to:
1. Define Monomial, Binomial, Trinomial, and polynomial.
2. Know and practice all operations to simplify polynomials.
3. Factor out polynomials, solve equations by factoring.
4. Simplify rational expressions, Apply the four operations to simplify rational expressions.
5. Solve Rational equations and use them to solve word problems.
6. Solve inequalities, as well as absolute value inequalities.
7. Solve word problems.
8. Define Square Roots, Rational and irrational numbers.
9. Simplify and solve Radical Equations.
10. Define nth root.
11. Simplify by using Radical Exponents.
12. Define Mean, Mode, Median and Quartiles of a Data.
13. Learn how to draw a frequency table.
八 年 级
代数学习目标:
1. 定义单项式、二项式、三项式和多项式。
2. 了解并练习简化多项式的所有操作。
3. 因式分解多项式,通过因式分解求解方程。
4. 化简有理表达式,应用四个操作来化简有理表达式。
5. 求解有理方程并用它们解决应用题。
6. 解决不等式,以及绝对值不等式。
7.解决单词问题。
8. 定义平方根、有理数和无理数。
9. 简化和求解根方程。
10. 定义第 n 个根。
11. 使用根指数进行简化。
12. 定义数据的均值、众数、中位数和四分位数。
13. 学习如何绘制频率表。
Geometry
Objectives
Students will be able to:
1. Recognize all types of Quadrilaterals and study their properties.
2. Define Trapezoid and use Mid segment theorem.
3. Define Ratios and proportions, use properties to solve equations.
4. Define similar polygones.
5. Learn and apply Theorem about similar triangles.
6. Use Theorems to find a length of a segment.
7. Apply similarity theorems in right triangle.
8. Define and Apply Pythagorean Theorem.
9. Introduce Trigonometric Ratios.
10. Define Circle, Chords, Secants and tangents.
11. Use Theorems related to Chords.
12. Define Inscribed and circumscribed polygons.
13. Define Orthocenter and centroid of a triangle.
八 年 级
几何学习目标:
1. 认识所有类型的四边形并研究它们的性质。
2. 定义梯形并使用中段定理。
3. 定义比率和比例,使用属性求解方程。
4. 定义相似的多边形。
5. 学习和应用关于相似三角形的定理。
6. 使用定理求段的长度。
7. 在直角三角形中应用相似性定理。
8. 定义和应用勾股定理。
9. 介绍三角比。
10. 定义圆、弦、割线和切线。
11. 使用与和弦相关的定理。
12. 定义内接和外接多边形。
13. 定义三角形的正交中心和质心。
Grade 9
Algebra
Objectives
Students will be able to:
1. Study the relation and elements connected to them.
2. Introduce a function as a special type of a relation, and study functions and elements connected to them.
3. Recognize: one to one function, onto function, eben and odd function.
4. Define and find the rule of a composite function.
5. Define and find the rule of the inverse function.
6. Understand the relation between the graph of a function and its inverse.
7. Recognize a logarithm function and know its properties.
8. Apply properties of logarithm function to solve equations and simplify expressions.
9. Study the effect of vertical, horizontal shifting as well as the effect of vertical and horizontal reflection.
10. Recognize the special features of the graph of the absolute value function.
11. Graph a quadratic function,
12. Convert a quadratic expression to canonical form.
13. Solve graphically the positions of 2 functions.
14. Solve and study the sign of a quadratic equations.
15. Find the domain, range, maximum and minimum of a quadratic expression.
16. Do long division.
17. Apply remainder and factor theorems and use them to solve word problems.
18. Find the rational roots of a polynomial.
19. Represent geometrically and algebraically a vector.
20. Define an arithmetic and geometric sequences.
21. Apply and use arithmetic and geometric sequences in word problems.
九 年 级
代数学习目标:
1. 研究与它们相关的关系和要素。
2. 将函数作为一种特殊的关系引入,并研究与它们相关的函数和元素。
3.认识:一对一函数、上函数、eben和奇函数。
4. 定义并找到复合函数的规则。
5. 定义并找到反函数的规则。
6. 理解函数图与其逆的关系。
7. 认识一个对数函数并知道它的性质。
8. 应用对数函数的性质来求解方程和简化表达式。
9.研究垂直、水平移动的影响以及垂直和水平反射的影响。
10.认识绝对值函数图形的特殊性。
11. 绘制二次函数,
12. 将二次表达式转换为规范形式。
13. 以图形方式求解 两个函数的位置。
14. 求解和研究一个二次方程的未知数。
15. 求二次表达式的域、范围、最大值和最小值。
16.做长除法。
17. 应用余数和因式定理并用它们解决应用题。
18. 求多项式的有理根。
19. 在几何和代数上表示一个向量。
20. 定义算术和几何序列。
21. 在应用题中应用和使用算术和几何序列。
Geometry
Objectives
Students will be able to:
1. Recognize central angles, arcs, inscribed angles and angles formed by secants and tangents.1
2. Find the locus.
3. Make a construction of a triangle, bisector, segment bisector and parallel lines.
4. Know the relative positions of 2 lines, lines parallel and perpendicular to a plane, parallel and perpendicular planes.
5. Define a directed angle.
6. Define the trigonometric ratios.
7. How to measure an angle in Radian and degrees.
8. Convert from radian to degrees and vice versa.
9. Find the trigonometric ratios of an acute angle in a right triangle.
10. Use trigonometric identities to simplify expressions and solve equations.
11. Recognize the area of planes figures.
12. Identify similar polygons and solids.
13. Find the surface areas and volumes of certain solids.
14. Find the image by using transformations.
15. Find elements of symmetry.
九 年 级
几何学习目标:
1. 认识圆心角、圆弧、内切角以及由割线和切线形成的角。
2. 找到轨迹。
3. 制作三角形、平分线、线段平分线和平行线。
4. 能识别两条直线的相对位置,识别平行或垂直于某个平面的线,识别互相平行或者垂直的平面。
5. 定义一个定向角度。
6. 定义三角比。
7. 如何以弧度和度数测量角度。
8. 从弧度转换为度数,反之亦然。
9. 求直角三角形中锐角的三角比。
10. 使用三角恒等式来简化表达式和求解方程。
11. 认识平面图形的面积。
12. 识别相似的多边形和实体。
13. 找出某些固体的表面积和体积。
14. 使用变换找到图像。
15. 找出对称元素。
Conclusion
How to teach Mathematics?
After years of experience, I think teaching Mathematics is to:
1. Find a way to approach students
2. Use interactive methodology
3. Fill gaps by identifying common mistakes
4. Teach prerequisites, if necessary
5. Connect Math concepts to everyday life
6. Allow students to explain their reasoning
7. Give frequent feedback and direction
8. Reward progress
9. Give assignments on regular basis to consolidate knowledge.
10. Provide quick and purposeful daily practice to build mastery in Mathematics
11. Reinforce year-level skills and enhance students’ mathematical proficiency.
如何教数学:
1. 找到接近学生的的方法;
2. 多和学生互动;
3. 通过识别常见错误来填补空白;
4. 必要时教授先决条件;
5. 将数学概念与日常生活联系起来;
6.让学生解释他们的推理;
7. 给予频繁的反馈和指导;
8.奖励进度;
9. 定期布置作业,巩固知识;
10. 提供快速而有目的的日常练习,以掌握数学
11. 强化年级技能,提高学生的数学能力。